結晶構造アプローチに基づくヨウ化銀系固溶体の 超イオン伝導メカニズムの解明

キーワード:超イオン伝導、固体電解質、ヨウ化銀

Composition	Conductivity at 25°C (S cm ⁻¹)	Ion Species	Reference
Li ₁₀ GeP ₂ S ₁₂ (LGPS)	1.2×10^{-2}	Li+	Kanno,Toyota,2011*1
$Na_{2.88}Sb_{0.88}W_{0.12}S_4$	3.2×10^{-2}	Na ⁺	Hayashi,2019 [⋇] ²
$Ce_{0.86}Sm_{0.14}O_{1.91}$	~10-2	H ⁺	Nishioka,2020≋³
Agl(nanoparticles)	1.5×10^{-2}	Ag^+	Kitagawa,2009×4
$Ag_{17}(CO_3)_3I_{11}$	1.6×10^{-1}	$Ag^{\scriptscriptstyle +}$	Matsushima,2021 ^{※ ⁵}
⇒このイオン伝導の高さから、他より 高速充放電や高出力性 が見込まれる			

\chi N. Kamaya et al., Nat. Mater., 2011, 10, 682 💥 A. Hayashi et al., Nat Commun, 2019, 10, 5266 💥 D. Nishioka et al., Nanoscale Res. Lett, 2020, 15, 42 X4 M, Rie et al., Nat. Mater. 2009, 8, 476 X5 Y, Watanabe et al., Inorg. Chem., 2021, 60, 2931

- ・超イオン伝導とは電解質溶液並みの高い イオン伝導性(>10⁻² S/cm)を持つ**固体電解** 質である。
- ・固溶体でもイオン伝導度の上昇が確認され ており**工業化のハードルも低い**材料
- ·二次電池の高性能化に必要な技術

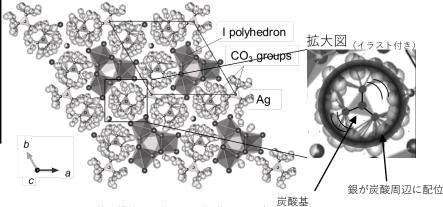


Fig. Ag₁₇(CO₃)₃I₁₁の結晶構造と回転による伝導イメージ (自由度をもつ)

< Point >

- ・他の代表的な固体電解質と比較しても約10倍の高い イオン伝導度
- · 炭酸基の回転によるイオンの輸送

炭酸銀によるイオン伝導性の上昇メカニズムを 結晶構造と伝導経路から解明。

山形大学 博士課程5年一貫教育プログラムフレックス大学院 **物質化学工学専攻**(副専攻:バイオ化学工学専攻) 松嶋 雄太 研究室 内田 憲利 (Kento UCHIDA) Email:tes97840@st.yamagata-u.ac.jp

